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1 Helly’s Theorem

1.1 Proof of Helly’s theorem

Theorem 1.1 (Helly). Suppose X1,..., X, C R? are convex sets such that X; # @ for all
[I| =d+1, where X; = ;e Xi. Then X1N0---NX, # .

When d = 1, we have a collection of intervals where every pair of intervals intersect;
then all intervals intersect. In this case the proof is elementary. Take the largest left
endpoint a* and the smallest right endpoint b* of one of the intervals. Then a* < b*, so a
point between a* and b* is contained in all the intervals.

However, when d = 2, the result is a little less obvious.

Proof. Let’s prove the theorem for d = 2, n = 4. Let J = {1,...,n}. Let y; € X ;-
Either one of the y; lies in the triangle formed by the three others or the y; form a convex
shape. In the first case, without loss of generality, y4 € X1NXoNX3. But if yq1, 42, y3 € Xy,
then y4 € X4. In the second case, find the point z at the intersection of the line segments
connecting y; to y3 and y2 to y4. Then z € Xo N Xy, and z € X1 N X3. So z € X;.

Now proceed by induction on n. Why does n imply n + 17 The proof is the same,
except we just include the points y; € X5, Xg,.... So in the first case, we just ignore the
extra points, we get

ZG(XQQX4ﬂX5ﬂ'--ﬂXn+1)ﬂ<X1ﬂXgﬂX5ﬂ---ﬂXn+1):XJ

for the second case.
Before we prove the general case, we will state a lemma. O

Lemma 1.1 (Radon). Let y1,...,ym € R, where m > d + 2. Then there exist I,I' # @
such that I N I' = @ and the convex hull of {y; : i € I} intersects the convex hull of

{y; :j eI}



Proof. Let yi = (Yiy,---,¥id) € R? with i = 1,...,m, m > d + 2. Consider the system of
equations > 7" 7, = 0 and Y ;- Ty ; = 0 for j € {1,...,d}. These are d + 1 equations.
So there exist (71,...,7n) # 0 which satisfies the system. Let I = {i : 7, > 0} and
I'={i:7; <0}. Then
Soier TV 2jer(—T)Y;
c c

where ¢ =3,/ 7i = Y ep — T O

Now we can prove the general case of Helly’s theorem.

Proof. For general d, we induct on n. The base case is n = d + 1. By the lemma, we get
z € X,, where r ¢ I, and z € X, where s ¢ I'. So z € X;. O

1.2 Applications of Helly’s theorem

Corollary 1.1. Let Ry, ..., R, C R? be azis-parallel rectangles. Suppose R; N R; # @ for
alli,j. Then RyN---N R, # @.

We could have proved this like we proved the case of d = 1 because the intersection of
rectangles is the pair of intersections of the corresponding intervals.

Corollary 1.2. Let A C R? be a fized convez set, and let X1,..., X, C R? be convex sets
such that for |I| = 3, there exists some ¢ € R? such that X; N (A+c) # @ for alli € 1.
Then there exists some ¢ € R? such that X; N (A+c) # @ for alli € {1,...,n}.

This says that if there is some translation where A intersects some of the X; there is
some translation where A intersects all of them.

Proof. Pick some point in a € A, and look at all A translated by the extreme points of X;.
Let X; be the convex hull of the translated copies of a. Then X is convex, so X # & for
all |[I| = 3. By Helly’s theorem, X ; # @, which completes the proof. O

Remark 1.1. If we take A to be a point, we get the original statement of Helly’s theorem
for d = 2.
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