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1 Helly’s Theorem

1.1 Proof of Helly’s theorem

Theorem 1.1 (Helly). Suppose X1, . . . , Xn ⊆ Rd are convex sets such that XI 6= ∅ for all
|I| = d+ 1, where XI =

⋂
i∈I Xi. Then X1 ∩ · · · ∩Xn 6= ∅.

When d = 1, we have a collection of intervals where every pair of intervals intersect;
then all intervals intersect. In this case the proof is elementary. Take the largest left
endpoint a∗ and the smallest right endpoint b∗ of one of the intervals. Then a∗ < b∗, so a
point between a∗ and b∗ is contained in all the intervals.

However, when d = 2, the result is a little less obvious.

Proof. Let’s prove the theorem for d = 2, n = 4. Let J = {1, . . . , n}. Let yi ∈ XJ\{i}.
Either one of the yi lies in the triangle formed by the three others or the yi form a convex
shape. In the first case, without loss of generality, y4 ∈ X1∩X2∩X3. But if y1, y2, y3 ∈ X4,
then y4 ∈ X4. In the second case, find the point z at the intersection of the line segments
connecting y1 to y3 and y2 to y4. Then z ∈ X2 ∩X4, and z ∈ X1 ∩X3. So z ∈ XJ .

Now proceed by induction on n. Why does n imply n + 1? The proof is the same,
except we just include the points yi ∈ X5, X6, . . . . So in the first case, we just ignore the
extra points, we get

z ∈ (X2 ∩X4 ∩X5 ∩ · · · ∩Xn+1) ∩ (X1 ∩X3 ∩X5 ∩ · · · ∩Xn+1) = XJ

for the second case.
Before we prove the general case, we will state a lemma.

Lemma 1.1 (Radon). Let y1, . . . , ym ∈ Rd, where m ≥ d + 2. Then there exist I, I ′ 6= ∅
such that I ∩ I ′ = ∅ and the convex hull of {yi : i ∈ I} intersects the convex hull of
{yj : j ∈ I ′}.
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Proof. Let yi = (yi1 , . . . , yi,d) ∈ Rd with i = 1, . . . ,m, m ≥ d + 2. Consider the system of
equations

∑m
i=1 τi = 0 and

∑m
i=1 τiyi,j = 0 for j ∈ {1, . . . , d}. These are d + 1 equations.

So there exist (τ1, . . . , τm) 6= 0 which satisfies the system. Let I = {i : τi > 0} and
I ′ = {i : τi < 0}. Then ∑

i∈I τiyi

c
=

∑
j∈I′(−τj)yj

c
,

where c =
∑

i∈I τi =
∑

j∈I′ −τj .

Now we can prove the general case of Helly’s theorem.

Proof. For general d, we induct on n. The base case is n = d + 1. By the lemma, we get
z ∈ Xr, where r /∈ I, and z ∈ Xs, where s /∈ I ′. So z ∈ XJ .

1.2 Applications of Helly’s theorem

Corollary 1.1. Let R1, . . . , Rn ⊆ R2 be axis-parallel rectangles. Suppose Ri ∩Rj 6= ∅ for
all i, j. Then R1 ∩ · · · ∩Rn 6= ∅.

We could have proved this like we proved the case of d = 1 because the intersection of
rectangles is the pair of intersections of the corresponding intervals.

Corollary 1.2. Let A ⊆ R2 be a fixed convex set, and let X1, . . . , Xn ⊆ R2 be convex sets
such that for |I| = 3, there exists some c ∈ R2 such that Xi ∩ (A + c) 6= ∅ for all i ∈ I.
Then there exists some c ∈ R2 such that Xi ∩ (A+ c) 6= ∅ for all i ∈ {1, . . . , n}.

This says that if there is some translation where A intersects some of the Xi there is
some translation where A intersects all of them.

Proof. Pick some point in a ∈ A, and look at all A translated by the extreme points of Xi.
Let X̂i be the convex hull of the translated copies of a. Then X̂i is convex, so X̂I 6= ∅ for
all |I| = 3. By Helly’s theorem, X̂J 6= ∅, which completes the proof.

Remark 1.1. If we take A to be a point, we get the original statement of Helly’s theorem
for d = 2.
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